Big Data & Tools with NoSQL
  • Big Data & Tools
  • ReadMe
  • Big Data Overview
    • Overview
    • Job Opportunities
    • What is Data?
    • How does it help?
    • Types of Data
    • The Big 4 V's
      • Variety
      • Volume
      • Velocity
      • Veracity
      • Other V's
    • Trending Technologies
    • Big Data Concerns
    • Big Data Challenges
    • Data Integration
    • Scaling
      • CAP Theorem
      • Optimistic concurrency
      • Eventual consistency
      • Concurrent vs. Parallel Programming
    • Big Data Tools
    • No SQL Databases
    • What does Big Data learning means?
  • Linux & Tools
    • Overview
    • Linux Commands - 01
    • Linux Commands - 02
    • AWK
    • CSVKIT
    • CSVSQL
    • CSVGREP
  • Data Format
    • Storage Formats
    • CSV/TSV/Parquet
    • Parquet Example
    • JSON
    • HTTP & REST API
      • Terms to Know
        • Statefulness
        • Statelessness
        • Monolithic Architecture
        • Microservices
        • Idempotency
    • REST API
    • Python
      • Setup
      • Decorator
      • Unit Testing
      • Flask Demo
      • Flask Demo - 01
      • Flask Demo - 02
      • Flask Demo - 03
      • Flask Demo - 04
      • Flask Demo - 06
    • API Testing
    • Flask Demo Testing
    • API Performance
    • API in Big Data World
  • NoSQL
    • Types of NoSQL Databases
    • Redis
      • Overview
      • Terms to know
      • Redis - (RDBMS) MySql
      • Redis Cache Demo
      • Use Cases
      • Data Structures
        • Strings
        • List
        • Set
        • Hash
        • Geospatial Index
        • Pub/Sub
        • Redis - Python
      • Redis JSON
      • Redis Search
      • Persistence
      • Databases
      • Timeseries
    • Neo4J
      • Introduction
      • Neo4J Terms
      • Software
      • Neo4J Components
      • Hello World
      • Examples
        • MySQL: Neo4J
        • Sample Transactions
        • Sample
        • Create Nodes
        • Update Nodes
        • Relation
        • Putting it all together
        • Commonly used Functions
        • Data Profiling
        • Queries
        • Python Scripts
      • More reading
    • MongoDB
      • Sample JSON
      • Introduction
      • Software
      • MongoDB Best Practices
      • MongoDB Commands
      • Insert Document
      • Querying MongoDB
      • Update & Remove
      • Import
      • Logical Operators
      • Data Types
      • Operators
      • Aggregation Pipeline
      • Further Reading
      • Fun Task
        • Sample
    • InfluxDB
      • Data Format
      • Scripts
  • Python
    • Python Classes
    • Serialization-Deserialization
  • Tools
    • JQ
    • DUCK DB
    • CICD Intro
    • CICD Tools
      • CI YAML
      • CD Yaml
    • Containers
      • VMs or Containers
      • What container does
      • Podman
      • Podman Examples
  • Cloud Everywhere
    • Overview
    • Types of Cloud Services
    • Challenges of Cloud Computing
    • High Availability
    • Azure Cloud
      • Services
      • Storages
      • Demo
    • Terraform
  • Data Engineering
    • Batch vs Streaming
    • Kafka
      • Introduction
      • Kafka Use Cases
      • Kafka Software
      • Python Scripts
      • Different types of Streaming
    • Quality & Governance
    • Medallion Architecture
    • Data Engineering Model
    • Data Mesh
  • Industry Trends
    • Roadmap - Data Engineer
    • Good Reads
      • IP & SUBNET
Powered by GitBook
On this page
  1. NoSQL
  2. Neo4J
  3. Examples

Relation

// Create Relation
MATCH (a:Student),(b:Course) WHERE a.firstname = 'Rachel' AND b.id = 'C001' 
CREATE (a)-[:TAKING]->(b);

MATCH (a:Student),(b:Course) WHERE a.firstname = 'Rachel' AND b.id = 'C003' 
CREATE (a)-[:TAKING]->(b);

//Relation Set wrong way
MATCH (a:Student),(b:Course) WHERE a.firstname = 'Monica' AND b.id = 'C001' 
CREATE (a)<-[:TAKING]-(b);

// Delete the relation
MATCH (a:Student)<-[r:TAKING]-(b:Course) WHERE a.firstname = 'Monica' AND b.id = 'C001' DELETE r;

// Recreat the relation
MATCH (a:Student),(b:Course) WHERE a.firstname = 'Monica' AND b.id = 'C001' 
CREATE (a)-[:TAKING {grade:"B+"}]->(b);

//
MATCH (a:Student),(b:Course),(c:Faculty) WHERE a.id = 101 AND b.id = 'C003' AND c.id='F003'
CREATE (c)-[:TEACHING]->(b)<-[:TAKING {grade:"A-",semester:"Spring2022"}]-(a);

// this creates duplicate link between Tony and DW
MATCH (a:Student),(b:Course),(c:Faculty) WHERE a.id = 103 AND b.id = 'C003' AND c.id='F003'
CREATE (c)-[:TEACHING]->(b)<-[:TAKING {grade:"A-",semester:"Spring2022"}]-(a);

// This way avoids it but it also doesnt create Ross and DW
MATCH (a:Student),(b:Course),(c:Faculty) WHERE a.id = 103 AND b.id = 'C003' AND c.id='F003' AND NOT (c)-[:TEACHING]->(b)
CREATE (c)-[:TEACHING]->(b)<-[:TAKING {grade:"A-",semester:"Spring2022"}]-(a);


MATCH (a:Student),(b:Course) WHERE a.id = 103 AND b.id = 'C003' 
CREATE (a)-[:TAKING {grade:"A-"}]->(b);

MATCH (a:Student),(b:Course) WHERE a.id = 104 AND b.id = 'C004' 
CREATE (a)-[:TAKING {grade:"A"}]->(b);

MATCH (a:Student),(b:Course) WHERE a.id = 105 AND b.id = 'C005' 
CREATE (a)-[:TAKING {grade:"A"}]->(b);

MATCH (a:Student),(b:Course),(c:Faculty) WHERE a.id = 106 AND b.id = 'C004' AND c.id='F001'
CREATE (a)-[:TAKING {grade:"B+"}]->(b)<-[:TEACHING]-(c);


MATCH (a:Student),(b:Course),(c:Faculty) WHERE a.id = 106 AND b.id = 'C002' AND c.id='F002'
CREATE (a)-[:TAKING {grade:"A-"}]->(b)<-[:TEACHING]-(c);



MATCH (a:Student{firstname:"Joey"})-[r]-(b:Course{id:"C002"})
SET r.grade = "A", r.semester="Spring2022"


MATCH (a:Student{firstname:"Monica"})-[r]-(b:Course{id:"C001"})
SET r.grade = "B+"



MATCH (a:Student),(b:Course),(c:Faculty) WHERE a.id = 101 AND b.id = 'C001' AND c.id='F001'
CREATE (c)-[:TEACHING]->(b);


MATCH (a:Student),(b:Course),(c:Faculty) WHERE a.id = 103 AND b.id = 'C003' AND c.id='F003'
CREATE (c)-[:TEACHING]->(b);


MATCH (a:Student)<-[r:TAKING]-(b:Course) WHERE a.firstname = 'Ross' AND b.id = 'C003' DELETE r;

PreviousUpdate NodesNextPutting it all together

Last updated 1 year ago