Big Data & Tools with NoSQL
  • Big Data & Tools
  • ReadMe
  • Big Data Overview
    • Overview
    • Job Opportunities
    • What is Data?
    • How does it help?
    • Types of Data
    • The Big 4 V's
      • Variety
      • Volume
      • Velocity
      • Veracity
      • Other V's
    • Trending Technologies
    • Big Data Concerns
    • Big Data Challenges
    • Data Integration
    • Scaling
      • CAP Theorem
      • Optimistic concurrency
      • Eventual consistency
      • Concurrent vs. Parallel Programming
    • Big Data Tools
    • No SQL Databases
    • What does Big Data learning means?
  • Linux & Tools
    • Overview
    • Linux Commands - 01
    • Linux Commands - 02
    • AWK
    • CSVKIT
    • CSVSQL
    • CSVGREP
  • Data Format
    • Storage Formats
    • CSV/TSV/Parquet
    • Parquet Example
    • JSON
    • HTTP & REST API
      • Terms to Know
        • Statefulness
        • Statelessness
        • Monolithic Architecture
        • Microservices
        • Idempotency
    • REST API
    • Python
      • Setup
      • Decorator
      • Unit Testing
      • Flask Demo
      • Flask Demo - 01
      • Flask Demo - 02
      • Flask Demo - 03
      • Flask Demo - 04
      • Flask Demo - 06
    • API Testing
    • Flask Demo Testing
    • API Performance
    • API in Big Data World
  • NoSQL
    • Types of NoSQL Databases
    • Redis
      • Overview
      • Terms to know
      • Redis - (RDBMS) MySql
      • Redis Cache Demo
      • Use Cases
      • Data Structures
        • Strings
        • List
        • Set
        • Hash
        • Geospatial Index
        • Pub/Sub
        • Redis - Python
      • Redis JSON
      • Redis Search
      • Persistence
      • Databases
      • Timeseries
    • Neo4J
      • Introduction
      • Neo4J Terms
      • Software
      • Neo4J Components
      • Hello World
      • Examples
        • MySQL: Neo4J
        • Sample Transactions
        • Sample
        • Create Nodes
        • Update Nodes
        • Relation
        • Putting it all together
        • Commonly used Functions
        • Data Profiling
        • Queries
        • Python Scripts
      • More reading
    • MongoDB
      • Sample JSON
      • Introduction
      • Software
      • MongoDB Best Practices
      • MongoDB Commands
      • Insert Document
      • Querying MongoDB
      • Update & Remove
      • Import
      • Logical Operators
      • Data Types
      • Operators
      • Aggregation Pipeline
      • Further Reading
      • Fun Task
        • Sample
    • InfluxDB
      • Data Format
      • Scripts
  • Python
    • Python Classes
    • Serialization-Deserialization
  • Tools
    • JQ
    • DUCK DB
    • CICD Intro
    • CICD Tools
      • CI YAML
      • CD Yaml
    • Containers
      • VMs or Containers
      • What container does
      • Podman
      • Podman Examples
  • Cloud Everywhere
    • Overview
    • Types of Cloud Services
    • Challenges of Cloud Computing
    • High Availability
    • Azure Cloud
      • Services
      • Storages
      • Demo
    • Terraform
  • Data Engineering
    • Batch vs Streaming
    • Kafka
      • Introduction
      • Kafka Use Cases
      • Kafka Software
      • Python Scripts
      • Different types of Streaming
    • Quality & Governance
    • Medallion Architecture
    • Data Engineering Model
    • Data Mesh
  • Industry Trends
    • Roadmap - Data Engineer
    • Good Reads
      • IP & SUBNET
Powered by GitBook
On this page
  1. NoSQL

InfluxDB

Time series DB (TSDB)

A Time Series Database (TSDB) is specialized for handling time series data, which are data points indexed in time order. This type of database is optimized for measuring change over time, tracking trends, and managing time-stamped data, often at a high volume and velocity.

Why not RDBMS

  • Transaction Logs & ACID properties.

  • Predefined Schema

  • Time-based queries

  • Vertical Scaling

  • Storage & Retention

  1. Efficiency in Time-based Queries:

    • TSDBs are explicitly built to handle queries that retrieve and aggregate data over time, making these operations much faster and more efficient than in RDBMSs.

  2. Data Retention Policies:

    • TSDBs often include built-in mechanisms to handle data retention, enabling automatic downsampling or deleting old data to manage storage efficiently.

  3. High Write Throughput:

    • They are optimized for high throughput and low-latency writes, which are essential for real-time data collection scenarios like monitoring and IoT.

  4. Scalability:

    • TSDBs are typically designed to scale horizontally, which is crucial for handling large volumes of time-stamped data.

  5. Built-in Time Series Functions:

    • Functions for typical time series operations like rolling averages, exponential smoothing, and time windows are often built directly into the database.

Changes to data are Inserts, not Updates.

PreviousSampleNextData Format

Last updated 1 year ago