Big Data & Tools with NoSQL
  • Big Data & Tools
  • ReadMe
  • Big Data Overview
    • Overview
    • Job Opportunities
    • What is Data?
    • How does it help?
    • Types of Data
    • The Big 4 V's
      • Variety
      • Volume
      • Velocity
      • Veracity
      • Other V's
    • Trending Technologies
    • Big Data Concerns
    • Big Data Challenges
    • Data Integration
    • Scaling
      • CAP Theorem
      • Optimistic concurrency
      • Eventual consistency
      • Concurrent vs. Parallel Programming
    • Big Data Tools
    • No SQL Databases
    • What does Big Data learning means?
  • Linux & Tools
    • Overview
    • Linux Commands - 01
    • Linux Commands - 02
    • AWK
    • CSVKIT
    • CSVSQL
    • CSVGREP
  • Data Format
    • Storage Formats
    • CSV/TSV/Parquet
    • Parquet Example
    • JSON
    • HTTP & REST API
      • Terms to Know
        • Statefulness
        • Statelessness
        • Monolithic Architecture
        • Microservices
        • Idempotency
    • REST API
    • Python
      • Setup
      • Decorator
      • Unit Testing
      • Flask Demo
      • Flask Demo - 01
      • Flask Demo - 02
      • Flask Demo - 03
      • Flask Demo - 04
      • Flask Demo - 06
    • API Testing
    • Flask Demo Testing
    • API Performance
    • API in Big Data World
  • NoSQL
    • Types of NoSQL Databases
    • Redis
      • Overview
      • Terms to know
      • Redis - (RDBMS) MySql
      • Redis Cache Demo
      • Use Cases
      • Data Structures
        • Strings
        • List
        • Set
        • Hash
        • Geospatial Index
        • Pub/Sub
        • Redis - Python
      • Redis JSON
      • Redis Search
      • Persistence
      • Databases
      • Timeseries
    • Neo4J
      • Introduction
      • Neo4J Terms
      • Software
      • Neo4J Components
      • Hello World
      • Examples
        • MySQL: Neo4J
        • Sample Transactions
        • Sample
        • Create Nodes
        • Update Nodes
        • Relation
        • Putting it all together
        • Commonly used Functions
        • Data Profiling
        • Queries
        • Python Scripts
      • More reading
    • MongoDB
      • Sample JSON
      • Introduction
      • Software
      • MongoDB Best Practices
      • MongoDB Commands
      • Insert Document
      • Querying MongoDB
      • Update & Remove
      • Import
      • Logical Operators
      • Data Types
      • Operators
      • Aggregation Pipeline
      • Further Reading
      • Fun Task
        • Sample
    • InfluxDB
      • Data Format
      • Scripts
  • Python
    • Python Classes
    • Serialization-Deserialization
  • Tools
    • JQ
    • DUCK DB
    • CICD Intro
    • CICD Tools
      • CI YAML
      • CD Yaml
    • Containers
      • VMs or Containers
      • What container does
      • Podman
      • Podman Examples
  • Cloud Everywhere
    • Overview
    • Types of Cloud Services
    • Challenges of Cloud Computing
    • High Availability
    • Azure Cloud
      • Services
      • Storages
      • Demo
    • Terraform
  • Data Engineering
    • Batch vs Streaming
    • Kafka
      • Introduction
      • Kafka Use Cases
      • Kafka Software
      • Python Scripts
      • Different types of Streaming
    • Quality & Governance
    • Medallion Architecture
    • Data Engineering Model
    • Data Mesh
  • Industry Trends
    • Roadmap - Data Engineer
    • Good Reads
      • IP & SUBNET
Powered by GitBook
On this page
  • Statelessness
  • Token-Based Authentication
  1. Data Format
  2. HTTP & REST API
  3. Terms to Know

Statelessness

PreviousStatefulnessNextMonolithic Architecture

Last updated 1 year ago

Statelessness

In a stateless system, each request from the client must contain all the information the server needs to fulfill that request. The server does not store any state of the client's session. This is a crucial principle of RESTful APIs. Characteristics include:

  • No Session Memory: The server remembers nothing about the user once the transaction ends. Each request is independent.

  • Scalability: Stateless systems are generally more scalable because the server doesn't need to maintain session information. Any server can handle any request.

  • Simplicity and Reliability: The stateless nature makes the system simpler and more reliable, as there's less information to manage and synchronize across systems.

  • Example: An API where each request contains an authentication token and all necessary data, allowing any server instance to handle any request.

In this diagram:

  • Request 1: The client sends a request to the load balancer.

  • Load Balancer to Server 1: The load balancer forwards Request 1 to Server 1.

  • Response from Server 1: Server 1 processes the request and sends a response back to the client.

  • Request 2: The client sends another request to the load balancer.

  • Load Balancer to Server 2: This time, the load balancer forwards Request 2 to Server 2.

  • Response from Server 2: Server 2 processes the request and responds to the client.

  • Statelessness: Each request is independent and does not rely on previous interactions. Different servers can handle other requests without needing a shared session state.

Token-Based Authentication

Common in stateless architectures, this method involves passing a token for authentication with each request instead of relying on server-stored session data. JWT (JSON Web Tokens) is a popular example.

Diagram explaining Statelessness