Data Warehousing
  • Data Warehousing
  • Readme
  • Fundamentals
    • Terms to Know
    • Jobs
    • Skills needed for DW developer
    • Application Tiers
    • Operational Database
    • What is a Data Warehouse
      • Typical Data Architecture
      • Problem Statement
      • Features of Data Warehouse
      • Need for Data Warehouse
      • Current State of the Art
    • Activities of Data Science
    • Types of Data
    • Data Storage Systems
    • Data Warehouse 1980 - Current
    • Data Warehouse vs Data Mart
    • Data Warehouse Architecture
      • Top-Down Approach
      • Bottom-Up Approach
    • Data Warehouse Characteristic
      • Subject Oriented
      • Integrated
      • Time Variant
      • Non Volatile
    • Tools
    • Cloud vs On-Premise
    • Steps to design a Data Warehouse
      • Gather Requirements
      • Environment
      • Data Modeling
      • Choosing ETL / ELT Solution
      • Online Analytic Processing
      • Front End
      • Query Optimization
    • Dataset Examples
    • Thoughts on some data
  • RDBMS
    • Data Model
      • Entity Relationship Model
      • Attributes
      • Keys
      • Transaction
      • ACID
    • Online vs Batch
    • DSL vs GPL
    • Connect to Elvis
    • SQL Concepts
      • Basic Select - 1
      • Basic Select - 2
      • UNION Operators
      • Wild Cards & Distinct
      • Group By & Having
      • Sub Queries
      • Derived Tables
      • Views
    • Practice using SQLBolt
  • Cloud
    • Overview
    • Types of Cloud Services
    • Challenges of Cloud Computing
    • AWS
      • AWS Global Infrastructure
      • EC2
      • S3
      • IAM
    • Terraform
  • Spark - Databricks
    • Storage Formats
    • File Formats
    • Medallion Architecture
    • Delta
  • Data Warehousing Concepts
    • Dimensional Modelling
      • Star Schema
      • Galaxy Schema
      • Snowflake Schema
      • Starflake Schema
      • Star vs Snowflake
      • GRAIN
      • Multi-Fact Star Schema
      • Vertabelo Tool
    • Dimension - Fact
    • Sample Excercise
    • Keys
      • Why Surrogate Keys are Important
    • More Examples
    • Master Data Management
    • Steps of Dimensional Modeling
    • Types of Dimensions
      • Date Dimension Table
      • Degenerate Dimension
      • Junk Dimension
      • Static Dimension
      • Conformed Dimensions
      • Slowly Changing Dimensions
        • SCD - Type 0
        • SCD - Type 1
        • SCD - Type 2
        • SCD - Type 3
        • SCD - Type 4
        • SCD - Type 6
        • SCD - Type 5 - Fun Fact
      • Role Playing Dimension
      • Conformed vs Role Playing
      • Shrunken Dimension
      • Swappable Dimension
      • Step Dimension
    • Types of Facts
      • Factless Fact Table
      • Transaction Fact
      • Periodic Fact
      • Accumulating Snapshot Fact Table
      • Transaction vs Periodic vs Accumulating
      • Additive, Semi-Additive, Non-Additive
      • Periodic Snapshot vs Additive
      • Conformed Fact
    • Sample Data Architecture Diagram
    • Data Pipeline Models
    • New DW Concepts
Powered by GitBook
On this page
  1. Data Warehousing Concepts
  2. Types of Facts

Periodic Fact

Stores current state at regular intervals.

Explain the state of entities at a particular instance in time.

The time interval can be hourly/daily/weekly.

Use Case:

Analyze business performance at a fixed interval.
Status of all flights. 
Inventory stock. How much stock is left at the end of the day?

Transaction Fact Table is the source, and this stores a snapshot of info.

GRAIN for this table will be hourly / 2 hrs / daily based on need.

PreviousTransaction FactNextAccumulating Snapshot Fact Table

Last updated 1 year ago